What Happens When You Freeze Water in a Container So Strong the Water Can’t Expand Into Ice?

Kevin asks: What would happen if you froze water, but the container was so strong the water couldn’t expand into ice?

ice-crackSome readers may recall a science class in which an excitable teacher walked to the front of the class to show off a small, cracked steel container, seemingly damaged by an incredibly powerful, but tiny force; only for said teacher to reveal that the damage had been done by nothing more than water. However, what would happen if you put the water in a container it couldn’t break out of and then froze it?

The short answer is that the water still turns into ice; however, if it genuinely cannot break the bonds of the container it is trapped inside, it turns into a very different kind of ice than we’re used to seeing.

We currently know of 15 different “solid phases” of water, aka ice, with each type  being distinct due to differing density and internal structure. The form you’re likely most familiar with is Hexagonal Ice which is what happens when water freezes normally under regular conditions. If you keep lowering the temperature of Hexagonal ice, it eventually becomes Cubic Ice; tweak the temperature and pressure further and you can create Ice II, Ice III all the way up to Ice XV.

Due to the inherent difficulty of producing such high/low pressures and temperatures, it has taken science up until as recently as 2009 to fully document every known form of ice.  The majority of ice’s final forms were discovered in part by a group of researchers in the Chemistry department of Oxford University who were able to create Ice XII, XIV and XV for the first time.

In the case of Ice XV, creating it involved taking Ice VI and slamming the temperature down to -143 degrees Celsius before exposing it to pressure 10,000 times greater than the Earth’s own atmosphere. This final form of ice, and by extension form of water, still managed to surprise even the minds at Oxford when against all of their expectations, it proved to be totally antiferroelectric, being unable to hold a charge at all.

But in the simplest sense, the different forms of ice are created through a varying combination of both pressure and temperature, the exact combinations of which can be found out by taking a quick look at the phase diagram of water. However, scientists can artificially tip the scales in their favour through various means. For example, when creating Ice XIII and XIV, Dr Christoph Salzmann and his team at Oxford used careful measures of hydrochloric acid to alter the temperature needed to create the ice.

If the above seems rather simple in the scheme of things, that’s because it was and other scientists, such as Professor John Finney (who was part of the team that discovered and created Ice XII in 1996) noted as much when questioned about it, commenting that Salzmann’s team had done in a few years what other researchers couldn’t do in 40.

Back to the question at hand, regular ice, or at least the version you were familiar with before we told you about the other 14 kinds, is capable of applying massive amounts of force when it freezes and expands. This is due to a very unique trait of water, mainly that it is less dense as a solid than as a liquid. This density disparity is due to how the molecules of water react upon freezing; water molecules join together in a rigid hexagonal structure which leaves a small, but nonetheless significant gap between the atoms that wasn’t there when the water was liquid. For the curious, water reaches its densest point at 4 degrees Celsius; any cooler or hotter and it begins to expand.

So exactly how much force is the ice capable of exerting? Well, people have been trying to work this out for a long time. In 1784 and 1785, one Major Edward Williams took advantage of the weather in Quebec and repeatedly tried and failed to find a method of containing ice. Williams at first tried to seal water inside of artillery shells, the cast iron plugs of which were launched  475 feet at an astonishing 20 feet per second when the pressure become too great. Unperturbed, Williams then took to anchoring the plugs in place using hooks, only for the shells to split in two.

In another experiment, an attempt was made to fill cannons made of one inch thick cast iron with water only for them too to split when it was frozen. Academics in Florence later tried to fill a ball made of one inch thick brass with water only for that too to crack when it was frozen. They later worked out that the force required to do so clocked in at around 27,720 pounds.

For a more exact answer, you need to once again go back the the water phase diagram, which shows that ice will turn into Ice II when the pressure reaches 300 Mega Pascals, which is exactly, 43,511.31 pounds of force per square inch. In other words, that’s the amount of pressure a container would need to be able to survive to stop water turning into regular ice, instead causing it to turn into Ice II.

So, to answer the initial question, if you froze water inside a container so strong it couldn’t turn into ice, it would still turn into ice, just a slightly different type of ice in terms of scientific classification and its internal structure. Science!

If you liked this article, you might also enjoy:

Find many more fascinating questions answered in our new book: The Wise Book of Whys, also available in audiobook form with 5 hours for just $5

Bonus Fact:

Expand for Further References
Share the Knowledge! facebooktwittergoogle_plusredditpinteresttumblrmailfacebooktwittergoogle_plusredditpinteresttumblrmail
Print Friendly
Enjoy this article? If so, get our FREE wildly popular Daily Knowledge and Weekly Wrap newsletters:

Subscribe Me To:  | 

24 comments

  • GREAT FEATURE DONE THERE. U HAD ME HOOKED FROM THE VERY TOPIC ITSELF. AND I WAS NOT DISAPPOINTED AFTER I WENT THRU. TNX KARL.

  • Just as long as it doesn’t turn into ice-nine. (God bless you, Mr. Vonnegut!)

  • I enjoyed the article. I didn’t know there were so many forms of ice. I don’t think 20 feet per second (less than 14 mph) seems that astonishing.

  • Would other isotopes of water behave differently? What about heavy water which has a different density?

  • Are all versions of ice, once exposed to the atmosphere, stable (i.e. melting through previous version into water, directly to water?)?
    Can they be consumed by people or would they explode when exposed to the atmosphere?

    Obviously frostbit isn’t a concern in this hypothetical.

  • “being unable to hold a charge at all.”

    Unsurprising, when I am very cold I find it hard to hold things too.

  • How many PSI to create Vanilla Ice?

  • Since the melting point of Ice I drops with pressure, my guess is that close to 0 C the water would simply supercool.

  • PV=NRT comes into play

  • Time Life science books had a whole book on water. In it there was a sequence of pictures of what happens when a cannonball filled with water is frozen to the bursting point. As a kid back in the ’60s I was facinated by it. I believe it was in a bank vault or such and chunks of the ball were embedded up to 2″ deep in the steel walls, if my memory is correct. I don’t have the book anymore to check though.

  • “…water reaches its densest point at 4 degrees Celsius…”
    That’s only at sea level; change the air pressure (say, to hundreds of PSI, or at the top of Mount Everest, or any other place between) and the densest point changes.

  • Well maybe I am confusing it. But I consider what happens in case of Coke bottle stored in a refrigerator, a valid example too. In this case even when the temperature is below the freezing point, the drink remains in the liquid form because of the pressure maintained inside the bottle. But once you open it, the Coke freezes. Somebody correct me if I am wrong please

    • Richard Whitney

      It will stay liquid for temperatures just below 32 degrees. At around 12 degrees, the temperature takes over the Coke formula and pressure, and the can explodes.

Leave a Reply

Your email address will not be published. Required fields are marked *